Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1 … n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
from functools import lru_cache
class Solution:
def generateTrees(self, n):
if n == 0: return []
@lru_cache(maxsize=None)
def generate(start, end):
ans = []
if start > end: return [None]
for i in range(start, end+1):
for left_node in generate(start, i-1):
for right_node in generate(i+1, end):
node = TreeNode(i)
node.left = left_node
node.right = right_node
ans.append(node)
return ans
return generate(1, n)